Accurate solutions of M-matrix Sylvester equations
نویسندگان
چکیده
This paper is concerned with a relative perturbation theory and its entrywise relatively accurate numerical solutions of an M -matrix Sylvester equation AX + XB = C by which we mean both A and B have positive diagonal entries and nonpositive off-diagonal entries and P = Im⊗A+B⊗ In is a nonsingular M -matrix, and C is entrywise nonnegative. It is proved that small relative perturbations to the entries of A, B, and C introduce small relative errors to the entries of the solution X. Thus the smaller entries of X do not suffer bigger relative errors than its larger entries, unlikely the existing perturbation theory for (general) Sylvester equations. We then discuss some minor but crucial implementation changes to three existing numerical methods so that they can be used to compute X as accurately as the input data deserve.
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملGauss-Sidel and Successive Over Relaxation Iterative Methods for Solving System of Fuzzy Sylvester Equations
In this paper, we present Gauss-Sidel and successive over relaxation (SOR) iterative methods for finding the approximate solution system of fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two m*m crisp matrices, C is an m*m fuzzy matrix and X is an m*m unknown matrix. Finally, the proposed iterative methods are illustrated by solving one example.
متن کاملOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملNumerical Solution of Fractional Control System by Haar-wavelet Operational Matrix Method
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
متن کاملTheoretical results on the global GMRES method for solving generalized Sylvester matrix equations
The global generalized minimum residual (Gl-GMRES) method is examined for solving the generalized Sylvester matrix equation [sumlimits_{i = 1}^q {A_i } XB_i = C.] Some new theoretical results are elaborated for the proposed method by employing the Schur complement. These results can be exploited to establish new convergence properties of the Gl-GMRES method for solving genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 120 شماره
صفحات -
تاریخ انتشار 2012